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Abstract—Without the aid of the large Prandtl number assumption, the Graetz problem with the effect of

natural convection in a uniformly heated horizontal tube is studied numerically by a relatively novel

vorticity-velocity method. Variations in local friction factor and Nusselt number with Rayleigh number

are shown for Prandtl numbers, Pr = 5, 2 and 0.7. Comparing with the available experimental data for

water, the present results for Pr = 5 show a better agreement than those with Pr — co. The asymptotic

solutions for z — co are further compared against the existing analytical and experimental data. A reason-
ably good agreement is observed.

INTRODUCTION

BecausE of practical interest, the combined free and
forced laminar convection in tubes had been studied
by many investigators. Experimental data are rather
abundant in both horizontal and inclined tubes. In
view of the various working fluids used in the litera-
tare, glycerol [1], the mixture of water and glycerol
[1, 2], and ethylene glycol [3-5] are classified as large
Prandtl number fluids; and, air [6-10], and nitrogen
(6] small Prandtl number fluids, while the Prandtl
numbers of water [1-4, 10-19] and ethyl alcohol [1,
2] are moderate. Some of these studies include data
for entrance flow [1, 2, 5, 6, 9, 11-19].

Numerous analytical solutions for this problem
were proposed first in the fully developed flow. Gen-
erally, the uniform wall heat flux boundary condition
with either a zero (“ZC’) [20] or infinite ('IC) [21,
22] value of the peripheral thermal conductivity was
utilized. However, the fully developed flow can only
be established in a long tube. Although the flow and
heat transfer characteristics of entrance flow with sig-
nificant natural convection effects are practically
important, the numerical data are available only in
limited cases due to the complexities arising from the
three-dimensionality of the flow. A large Prandt! num-
ber assumption was frequently used [4, 23-27] to
avoid the difficulty, but the results are obviously

+ Author to whom correspondence should be addressed.

unsuitable for both moderate and small Prandtl num-
ber fluids, such as water and gases. The perturbation
method [28] was known to be practical only in the
regime where the natural convection effect is
sufficiently small. The numerical solutions solving
three-dimensional elliptic governing equations [29]
needed prohibitively large computer time and thus
were unsuitable for engineering applications. By a
slight modification to the primitive variable cal-
culation described by Patankar and Spalding [30], the
buoyancy effects in the entrance region of horizontal
rectangular channels were studied by Abou-Ellail and
Morcos [31]. The available methods for solving the
primitive variable formulation need extra pro-
gramming and storage effort (e.g. the use of staggered
grids) and underrelaxation of the pressure-correction
equation as discussed in Farouk and Fusegi [32].

The formulation of the Navier—Stokes equations
employing the vorticity-velocity components has been
used for two-dimensional hydrodynamic stability
problems [33, 34]. References [35, 36] have also used
the vorticity—velocity method for predicting three-
dimensional flows along vertical and horizontal
square ducts, respectively. In the present study the
vorticity—velocity formulation of the Navier-Stokes
equations and the corresponding numerical scheme
are extended to the problem in a circular tube by using
cylindrical coordinates, and the flow and heat transfer
characteristics of the thermal entrance flow in a hori-
zontal tube can be further investigated for moderate
and small Prandtl number fluids.
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NOMENCLATURE
a,d tube radius and diameter W, fully developed axial velocity before
C constant, {(a*/uW;)0P:/0Z thermal entrance
Gr Grashof number, gf6.a*/v? W dimensionless quantity for W,
Grt Grashof number used by Patankar W', w" axial velocity in the thermal entrance
et al. [37), gBQ @’ jkv* region, Wi+ W and its dimensionless
F friction coefficient, 2%,,/(pW'*) quantity, wy,+4Ra w.
g gravitational acceleration
i average heat transfer coefficient Greek symbols
k thermal conductivity o thermal diffusivity
M,N  number of divisions in the r- and ¢- B coefficient of thermal expansion
directions, respectively & prescribed error defined in
Nu local Nusselt number, hd/k equation (18)
P,P.  pressure deviation and pressure for 1 dimensionless temperature difference,
fully developed laminar flow before (T—Ty)/0.
thermal entrance, respectively 8. characteristic temperature, ¢, a/k
14 dimensionless quantity for P 0.,0,  dimensionless bulk and average wall
Pe Peclet number, Pr Re temperature, respectively
Pr Prandtl number, v/a r viscosity
Q’ rate of heat transfer per unit axial v kinematic viscosity
length used by Patankar ez al. [37] & axial-direction vorticity defined in
G uniform heat flux at wall equation (8)
R, ¢, 7 cylindrical coordinates 0 density
r, ¢,z  dimensionless cylindrical coordinates . shear stress.
Ra Rayleigh number, Pr Gr
Ra*, Ra#, Rayleigh nl}mber based on bulk Subscripts
temperature difference and that c characteristic quantity
evaluated at film temperature used fm value evaluated at Buid film
by I\:Iorcos and Bergles [3], temperature (T, + T,)/2
9B(T.—Ty)d va w value at wall
Re Reynolds number, W’d/v 0 condition for pure forced convection.
Re Ra, parameter used in refs. {8, 22],
(W djw)[Bg(eT/0Z)a’/va] .
T.T, local temperature and uniform fluid Superscript
temperature at entrance, respectively average value.
U,V, W velocity components in the R-, ¢-, Z-
directions due to buoyancy effect Other symbol
u,v,w dimensionless quantities for U, V' 2 Laplacian operator,

aYer + (1/ndjor+(1/r)e%/ o>

THEORETICAL ANALYSIS

Consider a steady, hydrodynamically fully devel-
oped laminar flow in a horizontal circular tube, the
tube wall being heated with a uniform heat flux at
Z = 0. The physical configuration is shown in Fig. 1.
The well-known classical Graetz problem is extended
by including the natural convection effect by using
the Boussinesq approximation. Neglecting the vis-
cous dissipation and compression work and intro-
ducing the following dimensionless variables and par-
ameters:

r= Rla,
u=U/U,
wp = Wy Wﬁ

z = Z[(2a Pe)
v= ViU,
w= W/(4Ra W)

p=Pl(pUv/a), 0= (T—T,)/0.
Gr = ghB.a’v:, Pr=via
Re = W:(2a)/v, Pe = PrRe
U, = Grv/a, 0. = g alk (h
the governing equations for continuity, momentum

and energy can be written as
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where w; = 2(1 —r?). Without considering the solu-
tion near the vicinity of Z =0 [7, 23-26, 31, 35],
the axial viscous and diffusion terms are neglected.
Following the assumption made in ref. [36], the axial
pressure gradient retained in the equation is inde-
pendent of r and ¢. In the present numerical com-
putation, the value of Jp/dz is adjusted to fulfill the
global continuity condition at each cross-section. It
is noted that the terms on the left-hand side of the
momentum equations (3)—(5) can be neglected if the
large Prandtl number assumption is applied. Fur-
thermore, equation (5) yields a trivial solution, w = 0
and dp/oz = 0 everywhere in view of the fact that
w = 0. Hence the continuity equation (2) is reduced to
the two-dimensional form and the resultant governing
equations (3)—(7) will be the same as those in refs. [4,
24].

Without the aid of the large Prandtl number
assumption, the vorticity—velocity formulation of the
governing equations in a tube and its numerical
scheme are developed as follows. By introducing the
vorticity in the axial direction

f= oot ®)

the governing equations (2)—(4) can be reduced as
follows :

2, b 2w 10w %
Vrgt = 2P0 rogoz  or ©
2. U 2 ov 0w 4
V= 2t 258 T we Treg (O
8¢ v 6&,‘ 66 u
G — - — [ —
( + a¢ é éra¢ é
Lowou_ w1 (o o
rop 0z  or Oz + 4Pr\""5: " r oz
, 20
=V &+ a¢cosd7+ sing. (11)

The pressure terms in equations (3) and (4) are elim-
inated by a cross-differentiation to obtain the vorticity
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transport equation (11). Equations (9) and (10) can
be derived by differentiating the definition of vorticity
(8) with respect to r and ¢, respectively, and using the
continuity equation (2). Equations (9) and (10) are
used for solving the cross-sectional velocity com-
ponents u and v. Because of symmetry, the boundary
and initial conditions are stated as follows:

u=v=w=0 and d0/or=1 atr=1

v = Ou/(¥0P) = dw/(¥op) = & = 00/(rogp) =0
along symmetry plane, ¢ = 0 and n
u=v=w=¢=0=0atentrance, z =0. (12)

It is noted that equations (2)—(11) and boundary con-
ditions (12) are singular at r = 0. To avoid this diffi-
culty in computation, Cartesian coordinates are used
to formulate the equations at this point. Accordingly,
the horizontal velocity, the vorticity and horizontal
gradients of vertical velocity, axial velocity and tem-
peratures are zero at r = (.

Of practical interest are the computations of the
local friction coefficient f Re and local Nusselt num-
ber Nu from the determined developing velocity and
temperature fields along the channel axis z. Following
the usual definitions, the expressions for /' Re and Nu
can be written based on the overall force balance for
an axial length dZ and the temperature gradient at
the wall. The results are expressed as

(f Re)o = 2%, /(pW?)(2aW [v) = 16 = —=2C (13)
S Re|(f Re)o=1+(0P/0Z)[(0P;/0Z)
=14+Raf,(2)/2 (14)

(Nu), = h(2a)/ke = 2/(8.,—0,) (15)

where subscript 0 denotes the quantity for pure forced
convection

J1@)[= —(0p/02)/(4Pe™)]

is the pressure deviation due to secondary flow gen-
erated by the axial momentum. If the large Prandt]
number assumption is invoked, the mean axial velo-
city is kept practically unchanged from that of the
pure forced convection [4, 23-26]. Thus, w will be
identically zero and w’ = w; as shown in refs. [4, 24].

The Nusselt number may be also obtained by con-
sidering an overall energy balance for the axial length
dZ as

(Nu), = f f (86/3z)wr dr dd/[2n (0, — 6,)]. (16)

Although the mean value of (Nu), and (Nu), was
taken as the final local Nusselt number presented in
ref. [24], only the value of (Nu), is used in the present
study due to a better accuracy as shown in the ana-
lytical work by Patankar et al. [37] and experimental
work by Morcos and Bergles [3].
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NUMERICAL METHOD OF SOLUTION

For given values of Ra and Pr, the numerical
method of solution for unknown u, v, w, £ and 6 in
equations (5)—(11) satisfying boundary condition (12)
is briefly described below.

(1) The initial values for velocity components u, v,
w and the temperature difference () are assigned zero
at z < 0. Consequently, ¢ = 0 at z < 0 results from
equation (8).

(2) The values of du/éz and dv/éz in equation (11)
are calculated by using a two-point backward differ-
ence formula. With the known values of u, v, w,
wy, 0, —(8p/dz)/(4Pe?) and its cross-sectional spatial
derivatives computed by a central difference formula,
the new values of w, 0 and ¢ at the interior points of
the next axial position are obtained from equations
(5. (7) and (11), respectively, by the Du Fort-Frankel
method [4, 26].

(3) Check if the mean axial velocity due to the
buoyancy effect w is equal to zero. Otherwise, adjust the
value of the pressure term f(z) = —(dp/0z)/(4Pe™)
in equation (5) to meet the requirement that w = 0.
Thus the values of the local f Re in equation (14) at
this axial position can be determined.

(4) By applying boundary conditions é0/ér = 1
and V;,0 = 0 at the wall, the temperature along the
tube wall can be computed by iteration after the tem-
peratures in the interior points are found. Then the
Nusselt number (Nu), is computed from equation
(15).

(S) The values of é°w/(régdz), 8*w/drdz, cuj(rdf),
Jvj(ré), 8E/ér and 0E/(ré¢) are calculated from the
results obtained in step (2) by using the backward
difference formula in the axial direction and a central
difference formula in the transverse direction. The
elliptic equations (9) and (10) are solved for x and ¢
by an iteration process. During the iteration process,
the values of vorticity on the boundary are evaluated
simultaneously with « and v in the interior region as

':M+ 1y = (MM‘H U0 )/(2”M+ 1;2A¢)

(a7

200 A=V iV aga02— Canye

It is noted that equation (17) is obtained by dis-
cretizing equation (8) into finite-difference form at the
point (M +1/2,/). Initially, the boundary vorticity at
the previous axial section was used to compute the
current interior vorticity, but this process was found
to give an unconverged solution. Finally, equation
(17) was used in the present numerical scheme.

(6) The following convergence criterion for the
velocity components u and v is used to judge whether
or not another iteration is performed

M ON

e= Y Yl = ) /(M N) < 5x 107
i

ij

(18)
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where M and N are the numbecr of divisions in the r-
and ¢-directions, respectively.

(7) By repeating steps (2)—(6), the unknowns u. &,
w, ¢ and 0 at the next axial step can be calculated.
By numerical experiments, an optimal step size A-
depends mainly on the magnitude of the Rayleigh
number and also the Prandtl number. In the present
study, the axial step size Az ranges from 10 *to 107

A cross-sectional mesh size (M x V) ol 20 x 20 has
been found to yield an acceptable accuracy in Hong
et al. [4] and 1s used in the present study. The required
computer time for solution of one set of Pr and R
1s approximately 500 s for the cases of Pr =5 and
Ra < 10° and 1500 s for the cases of Pr = 0.7 and
Ra < 3x10* on a CDC cyber 170 system.

RESULTS AND DISCUSSION

The numerical result should be independent of the
axial step size Az. Therefore, a numerical experiment
was made and the result is shown in Table 1 for
the case of Pr =5 and Ra = 10°. It is scen that the
deviations of computed Nu with Az = 2.5x 107" and
5x 1073, at each axial position are less than 0.46%.
This independency of the numerical result on Az also
reveals that the two-point backward difference for-
mula employed in this numerical method, does not
yield any appreciable error.

The typical developing temperature profiles along
the vertical symmetry line (¢ = 0 and n) are shown in
Fig. 2 for the cases of Pr = 5 and 2, and Re = 10" at
various axial positions. The buoyancy induced sec-
ondary flow carries the heated fluid upward along the
tube wall and downward along the symmetry plane.
Therefore, the temperature at the upper wall (r = 1.0,
¢ = 0) is greater than that at the lower wall (r = 1.0,
¢ = m). The temperature distributions along ¢ =0
and © develop gradually from the almost symmetric
case at z = | x 107* wherc the secondary flow is rather
weak to the case at z = 1.25x 10 7 in which a large
temperature difference between the upper part (along
¢ = 0) and the lower part (along ¢ = x) is found due
to the development of secondary flow. The effect of
Prandtl number on developing temperature profiles
can be also investigated by comparison of the results
for Pr= 5 and 2 shown in Fig. 2. It is scen that the
temperature distribution for Pr = 2 almost coincides
with that of Pr = Satz < 2x 10" " butatz = 6x 10
and 1 x 1072 the values of the curves of Pr =2 arc
higher than those of Pr = 5 in the upper part (¢ = (})
because the intensity of the secondary flow is stronger
for the cases of Pr =2 due to its higher Grashof
number rather than that of Pr = 5.

Figure 3 shows the development of axial velocity
due to the buoyancy effect along the symmetry line
(¢ =0 and =) for the cases of Pr =35 and 2 with
Ra = 10° at various axial positions. It is seen that
the axial velocity profiles are almost symmetric with
respect to the centre r = Oatz = 1 x 10 Jand 2 x 107
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Table 1. Nusselt number results obtained by a numerical experiment for Az (Pr = 5, Ra = 16°)

z

Az 1x10-? 2% 107° 4x 1973 6x107? 8x107° 107
2.5x1077 12.317 10.136 9.260 9.015 8.985 9.013
5% 107° 12.373 10.155 9.263 9.013 8.987 9.014

N
N+1

Fic. 1. Physical configuration and the coordinate system.

for which the secondary flow is weak. With the devel-
opment of the secondary flow, the symmetry is lost
and the location of w = 0 moves toward the lower
wall as z increases from 2x10~% to 6x 10~ The
location of w = 0 moves upward and the w profiles
become more uniform as z further increases to
z=15%10"% where the velocity profile is fully
developed. Comparison of the results of Pr =2 and
3. the effect of Prandtl number on the axial velocity
due to buoyancy can be studied. One can observe that
the curve of Pr =2 at z = 1 x 107* almost coincides
with that of Pr =35, but the curve of Pr=2 along
¢ = 0 becomes more up-skewed at z = 2x 107° and,
furthermore, the maximum absolute values of w for

Pr=2 are higher than those for Pr=J at
z=6%10"%and 1 x 1072 due to the effect of stronger
secondary flow with smaller Prandtl number.

The natural convection effect on the flow charac-
teristic of the system is usually presented by the fric-
tion factor ratic f Re/{f Re),, where subscript §
denotes the guantity for pure forced convection. Fig-
ure 4 shows the values of f Re/{f Re), vs dimen-
sionless axial distance z for the cases of Pr = 0.7, 2
and 5 with Rayleigh number as a parameter, When
the Prandtl number is large, the axial velocity com-
ponent w vanishes [4, 23-26]. Therefore, the line of
f Re/(f Re), = 1.0 is the result for the case of Pr—
oo. The variation of the local friction factor ratio
along the channel axis shows that the natural con-
vection effect is negligible up to a certain axial distance
z*, depending mainly on the magnitude of the Grashof
number and only slightly on the Prandil number.
When the value of Pr is fixed, the axial distance z* is
shorter with a high value of Ra, while the value of Ra
is fixed, the axial distance z* is shorter with a higher
value of Pr. Bach curve in Fig. 4 branches out from
the line of f Re/(f Re), = 1 at the onset point z* and
after reaching a maximum value, the curve approaches
rapidly to a limiting value when the velocity profile
becomes fully developed. Furthermore, one can
observe that the curves with higher Pr fall below
that of lower Pr for a fixed value of Ra. A special
trend is also seen for the curve of Pr{Ra) = 0.7(10°).
By a detailed inspection of the transverse velocity
field » and v, multiple pair eddies appear at
z=8x10"% ~ 1.4 x 1072 but finally single pair eddies
are again obtained at z > 2x 107% For the z range
over which multiple pair eddies appear, f Re/(f Re),

0 0.2

0.4 06

FIG. 2. Temperature distribution along the vertical symmetry plane (¢ = 0 and =) for Pr=$ and 2
(Ra = 10°).
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is retarded as seen in the corresponding curve in Fig.
4. Similar phenomena have been reported in refs. {37,
39]. However, an examination of this matter should
consider stability analysis and is beyond the scope of
the present work.

The local Nusselt number behavior is of primary
interest. The effect of natural convection on the local
Nusselt number for the thermal entrance flow is
shown in Fig. 5 for the cases of Pr = 0.7, 2 and 5 with
Ra = 10% 3x10% 10° and 3.75x10°. The exper-
imental data using water by Petukhov and Polyakov
{19] and the numerical results based on the large
Prandtl number assumption {Pr — c0) by Cheng and

Ou [24] are also reproduced for comparison. It is seen
that the curves with lower values of Pr fall below those
with higher values of Pr for a given Rayleigh number.
This phenomenon can be also seen in the previous
experimental investigations using water and ethylene
glycol in a glass tube by Morcos and Bergles [3] in the
fully developed region, and the numerical results in
ref. [36] in the thermal entrance region. One can also
observe that the differences between the curves of
Pr— oo and Pr=10.7 increase as the values of Ra
increase. Although both Hong e¢f af. [4] and Cheng
and Ou [24] suggested that the analytical model based
on the large Prandtl number assumption is approxi-
mately valid for water, the present results for Pr = 5
show a better agreement for the cases of Ra =
2.1875x 10* and 7.14x 10" The experimental data
fall above the curve of Pr=35 and Ra=375x
10°. This phenomenon can be also seen in the compar-
ison of experimental data and numerical results in ref.
[38] in square channels. It may be caused by the effect
of fluid property variation with temperature [1].

The variation of the local Nusselt number along the
channel shows that the natural convection effect is
negligible up to a certain axial distance z* depending
mainly on the magnitude of the Grashof number and
also the Prandtl number. The values of z* are seen to
decrease with the increase in Ra. For a fixed Rayleigh
number, the axial distance z* decreases with the
increasein Pr. The curve of the local Nusselt number is
seen to deviate from that of the pure forced convection
case. For the combined effect of entrance flow and
natural convection, minimum and maximum local
Nusselt numbers exist for some curves. Finally they
approach asymptotic values when the temperature
profiles become fully developed.

Because of the lack of additional data for the
entrance flow, the asymptotic friction factor and Nus-
selt number results in the fully developed region are
further compared with previous work. There were
several different parameters chosen in the existing
literature. After careful derivation, the relationships
among the parameters are obtained as follows:
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FI1G. 5. Local Nusselt number vs z.

(19)

ReRa, = <E> Grt
r

16Ra _ 4Pr Re Ra,
Nu ~— Nu

where Re Ra, = W(2a)/v-gB(0T/0Z)a*/va is the par-
ameter used in refs. [8, 22], Gr™ = gBQ’a’/kv* is the
parameter based on the rate of heat transfer per unit
axial length and was used by Patankar et al. {37}, and
Ra* = gB(T,— T,)d*/va is the parameter based on the
bulk temperature difference and was used by Morcos
and Bergles [3]. In ref. [3] Rag, denoting the Rayleigh
number Ra* evaluated at the film temperature was
also used. For the convenience of presenting exper-
imental data [3], the parameters Raf, and Ra* are
used in Figs. 6 and 7, respectively.

It can be seen in Fig. 6 that the present asymptotic
values of f Re/(f Re), for Pr = 5 lie closely with the
numerical result of Pr = 4.5 for uniform wall heat flux
with zero heat conduction around the tube cir-
cumference [20]. The experimental data of water in
glass and metal tubes [3] fall above the present result
of Pr = 5 and lie between the IC and ZC curves [20]
due to finite tube wall conduction around the cir-
cumference. The numerical results of Pr = 4 and 0.72
in ref. [22] fall above the present curves of Pr = 5 and
0.7, respectively, for the combination of the uniform
axial heat flux and the uniform circumferential tem-
perature thermal boundary condition. The numerical
results of Patankar et al. [37] for the cases of Pr =35
and 0.7 with bottom heating condition also fall above
the present results accordingly. In view of the uniform
axial and circumferential wall heat flux thermal
boundary condition used in the present investigation,
the present results of Pr = 0.7 are reasonable.

Ra* = (20)

The asymptotic values of Nu in the present study
are shown in Fig. 7. The results for Pr =5 show a
good agreement with the experimental data of water
in a glass tube [3] and the ZC curve for Pr = 4.5 [20].
The IC prediction of Pr = 0.72 and 4 [22] lie above
the present work of Pr = 0.7 and 5, respectively. The
numerical results for Pr = 5 [37] with bottom heating
condition predict higher values than the foregoing
data. The correlation equation for air in a brass tube
by Mori er al. [8] overestimates the data obtained by
the present work for Pr=0.7. By considering the
trends of the data caused by the different boundary
conditions, i.e. the use of a high conductivity wall
material such as brass [8] and the zero wall conduction
around the tube circumference used in this work, the
present asymptotic Nusselt numbers for Pr = 0.7 are
reasonable.

CONCLUDING REMARKS

(1) A relatively novel vorticity~velocity for-
mulation of the Navier-Stokes equations and its
numerical scheme are employed to study the natural
convection effect on the Graetz problem in a hori-
zontal tube without the aid of large Prandtl number
assumptions. The values of the boundary vorticity on
the tube wall are solved simultaneously with the
velocity components u and v as shown in equation (17).

(2) The secondary flow distorts the axial velocity
and temperature profiles, and the locations of the
maximum velocity and the minimum fluid tem-
perature are moved toward the bottom tube wall.
For a given Rayleigh number, the effect of decreasing
Prandtl number is to increase the distortion of the
axial velocity and temperature profiles due to the
stronger secondary flow.
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Fii. 7. Comparison of asymptotic Nusselt numbers with the existing theoretical and experimental data.

(3} Variations in both the local friction factor and
Nusselt number show that the natural convection
effect is negligible up to a certain axial distance,
depending mainly on the magnitude of the Rayleigh
number and to a lesser extent the Prandtl number.
When the Prandt] number is held fixed, the axial dis-
tance is shortened with the increase in Rayleigh
number. Likewise for a given Rayleigh number, the
axial distance is also shortened with the increase in
Prandt]l number. Curves of the local friction factor
ratio and local Nusselt number branch out from the
curves for pure forced convection and, after reaching

a maximum value for f Re/{f Re), and a minimum
or also a maximum value for Nu, the curves approach
asymptotic values when the velocity and temperature
profiles become fully developed. The curves of f Re/
{f Re), and Nu with higher values of Ra lic above
that of the lower value of Ra. For a given Rayleigh
number, the curve of Nufor the case of Pr — oo attains
the highest value, but the curve of f Re/(f Re), with
a lower value of Pr lies above that with the higher
value of Pr due to the stronger secondary flow.

(4) The present results of Pr = 5 agree favorably
with the available experimental and numerical data
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both in the entrance and fully-developed flows.
Because of a lack of corresponding data, the present
ZC data of Pr = 0.7 are compared with the existing
experimental and numerical results for the IC bound-
ary condition to find a reasonable comparison.
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ANALYSE NUMERIQUE DU PROBLEME DE GRAETZ AVEC CONVECTION
NATURELLE DANS UN TUBE CHAUD HORIZONTAL

Résumé—Supposant un grand nombre de Prandtl, le probléme de Graetz, avec effet de convection naturelle

dans un tube horizontal uniformément chauffé, est étudié numériquement a I’aide d’une nouvelle méthode

vorticité—vitesse. Des variations du coefficient de frottement local et du nombre de Nusselt en fonction du

nombre de Rayleigh sont montrées pour des nombres de Prandtl Pr = 35, 2 et 0,7. Comparés a des données

expérimentales pour ’eau, les résultats présentés pour Pr = 5 montrent un accord meilleur qu’avec Pr —

oc. Les solutions asymptotiques pour z — oo sont comparées avec les données analytiques et expérimentales
disponibles. On observe un accord raisonnable.

NUMERISCHE UNTERSUCHUNG DES GRAETZ-PROBLEMS MIT UBERLAGERTER
NATURLICHER KONVEKTION IN EINEM GLEICHFORMIG BEHEIZTEN
WAAGERECHTEN ROHR

Zusammenfassung—QOhne Zuhilfenahme einer Beschrinkung auf grofe Prandtl-Zahlen wird das Graetz-
Problem mit iiberlagerter natiirlicher Konektion in einem gleichférmig beheizten waagerechten Rohr
numerisch mit einem relativ neuartigen Wirbelfunktions-Geschwindigkeits-Verfahren untersucht. Der
EinfluB der Rayleigh-Zahl auf die rtlichen Werte von Wandschubspannung und Nusselt-Zahl wird fiir
die Prandtl-Zahlen Pr = 5, 2 und 0,7 gezeigt. Vergleicht man die hier vorgestellten Ergebnisse fir Pr =5
mit den verfiigbaren Versuchsdaten fiir Wasser, so zeigt sich eine bessere Ubereinstimmung als fiir Berech-
nungen mit Pr— ov. Weiterhin werden die asymptotischen Losungcn fiir z— oo mit vorhandenen
analytischen und experimentellen Werten verglichen. Dabei ergibt sich eine verhiltnismiBig gute Uber-
einstimmung.

UMCJIEHHBIA AHAJIU3 3AJJAUM I'POTLIA C YYETOM ECTECTBEHHOM KOHBEKLIUU
B OJJHOPOJHO HATPETON I'OPU3OHTAJIBHON TPYBE

Annoraius—3agaya ['pITLa ¢ y4eTOM BIIMAHHA €CTECTBEHHON KOHBECKIMH B OJHOPOJHO HArPETOR TOpH-
30HTAJILHO#M Tpy6e pelaeTcs YMCACHHO B MEPEMEHHBIX CKOPOCTb—3aBHXPEHHOCTH METOIOM, HE HCIOJIb-
3yloIEM npubauxenus 6oapmx yuces ITpanaTis. 3aBHCHMOCTD JIOKaNBHOrO Kod(duimeHTa TpeHus K
uncia Hyccensta oT umucna Panes npusenesa wis uucen Ipanarns Pr = §, 2 n 0.7. Cpasuenue pesyib-
TATOB, NOJIYYEHHBIX LI Pr = 5 ¢ AMEIOIAMHCSA ONBITHHIMH JaHHBIMM JUIS BOAb! MOKa3bIBaeT Jy4llee
COOTBETCTBHE, YeM IS Ciiydas Pr — oo. ACHMIITOTHYECKHE PEILCHHS 1JIsl Z — 00 CPAaBHHUBAIOTCA Hajiee C
CYIUECTBYIOLIMMH aHAJIMTHIECKUMH I OTIBITHBIMY JaHHBIMH. HalineHo ux xopoitiee COOTBETCTBHE.



